Laboratory of bioanalysis and imaging

Laboratory of Bioanalysis and Imaging focuses on analysis of a wide range of biological, clinical and environmental samples. The laboratory combines classical analytical approaches with use of electromigration methods (classical instrumental design, chip-based, modular portable systems, etc.) with absorption, conductivity, or laser/LED-induced fluorescence detection.

The laboratory also develops and tests micro-flow separation and detection systems based on the LabSmith kit or lateral micro-flow systems on paper carriers for point of care applications. The laboratory also focuses on the synthesis of a wide range of nanoparticles and nanostructured materials (in particular, semiconductor nanocrystals (quantum dots), upconversion nanoparticles and metal-based nanoparticles (zinc, copper and selenium)). These advanced materials are further used as a basis for bio-sensors to enhance the separation efficiency of capillary electrophoresis, biomolecule labeling and in vivo / in vitro imaging. The aim of in vivo imaging is to use advanced “smart” materials for a) real-time diagnostics of physiological and pathological processes in model organisms (small mammals), b) drug transport and c) theranostic applications, i.e. applications combining drug transport, its release i the target site (therapy), and subsequent imaging (diagnosis).





Ing. Lukáš Nejdl, Ph.D.

Head - Laboratory of bioanalysis and imaging
Assistant Professor


Phone: 420545 13 32 90
Address: ÚCB AF, Zemědělská 1, 61300 Brno - Budova D
Office: BA02N3010
E-mail: lukasnejdl@gmail.com

Team members

  • Ing. Lukáš Nejdl, Ph.D.
  • Ing. Lucie Pompeiano Vaníčková, PhD.
  • prof. RNDr. Miroslav Macka, Ph.D.
  • Ing. Jaroslava Bezděková
  • Ing. Kristýna Pavelicová
  • Ing. Kristýna Zemánková

Topics of Ph.D. theses

  • Optional topic
  • Volné téma


Projects

  • AZV ČR: Role of monocyte metabolism and transcription factor networks in progression of human sepsis.. 2018-2021.
  • FAO/IAEA: Assessment of Simultaneous Application of SIT and MAT to Enhance Bactrocera Fruit Fly Management. 2019-2023.
  • GAČR: Paperfluidic-based rapid low cost portable analytical devices with instrumentation-free readout. 2019-2021.
  • JCMM: Metallothionein as Prognostic Biomarker in Skin Cancer. 2017-2020.
  • Mendelu: UV-Induced Fingerprint Spectroscopy. 2019-2020.


Publications

  • Rahbar, M.; Nesterenko, P. N.; Paull, B.; Macka, M.; High-throughput deposition of chemical reagents via pen-plotting technique for microfluidic paper-based analytical devices. Analytica Chimica Acta 2019, 1047, 115-123. DOI: 10.1016/j.aca.2018.09.006.
  • Islam, M. A.; Mahbub, P.; Nesterenko, P. N.; Paull, B.; Macka, M.; Prospects of pulsed amperometric detection in flow-based analytical systems - A review. Analytica Chimica Acta 2019, 1052, 10-26. DOI: 10.1016/j.aca.2018.10.066.
  • Rahbar, M.; Paull, B.; Macka, M.; Instrument-free argentometric determination of chloride via trapezoidal distance-based microfluidic paper devices. Analytica Chimica Acta 2019, 1063, 1-8. DOI: 10.1016/j.aca.2019.02.048.
  • Vaneckova, T.; Bezdekova, A.; Han, G.; Adam, V.; Vaculovicova, M.; Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomater. 2019, in press, . DOI: 10.1016/j.actbio.2019.11.007.
  • Islam, M. A.; Lam, S. C.; Li, Y.; Atia, M. A.; Mahbub, P.; Nesterenko, P. N.; Paull, B.; Macka, M.; Capillary gap flow cell as capillary-end electrochemical detector in flow-based analysis. Electrochim. Acta 2019, 303, 85-93. DOI: 10.1016/j.electacta.2019.02.026.
  • Islam, M. A.; Atia, M. A.; Macka, M.; Paull, B.; Mahbub, P.; Electrochemical characterisation of nanoparticulate zirconium dioxide-on-gold electrode for electrochemical detection in flow-based analytical systems. Electrochim. Acta 2019, 318, 61-68. DOI: 10.1016/j.electacta.2019.06.031.
  • Islam, M. A.; Koreshkova, A. N.; Gupta, V.; Lewis, T.; Macka, M.; Paull, B.; Mahbub, P.; Fast pulsed amperometric waveform for miniaturised flow-through electrochemical detection: Application in monitoring graphene oxide reduction. Electrochim. Acta 2019, 328, 1-8. DOI: 10.1016/j.electacta.2019.135087.
  • Alves, M. N.; Miro, M.; Breadmore, M. C.; Macka, M.; Trends in analytical separations of magnetic (nano)particles. TRAC-Trends Anal. Chem. 2019, 114, 89-97. DOI: 10.1016/j.trac.2019.02.026.
  • Rahbar, M.; Wheeler, A. R.; Paull, B.; Macka, M.; Ion-exchange based immobilization of chromogenic reagents on microfluidic paper analytical devices. Analytical Chemistry 2019, 91, 8756-8761. DOI: 10.1021/acs.analchem.9b01288.
  • Vaneckova, T.; Bezdekova, J.; Tvrdonova, M.; Vlcnovska, M.; Novotna, V.; Neuman, J.; Stossova, A.; Kanicky, V.; Adam, V.; Vaculovicova, M.; Vaculovic, T.; CdS quantum dots-based immunoassay combined with particle imprinted polymer technology and laser ablation ICP-MS as a versatile tool for protein detection. Sci. Rep. 2019, 9, 1-9. DOI: 10.1038/s41598-019-48290-2.
  • Pastorek, A.; Hrncirova, J.; Jankovic, L.; Nejdl, L.; Civis, S.; Ivanek, O.; Shestivska, V.; Knizek, A.; Kubelik, P.; Sponer, J.; Petera, L.; Krivkova, A.; Cassone, G.; Vaculovicova, M.; Sponer, J. E.; Ferus, M.; Prebiotic synthesis at impact craters: the role of Fe-clays and iron meteorites. Chem. Commun. 2019, 55, 10563. DOI: 10.1039/c9cc04627e.
  • Alves, M. N.; Nesterenko, P. N.; Paull, B.; Haddad, P. R.; Macka, M.; Separation of superparamagnetic magnetite nanoparticles by capillary zone electrophoresis using non-complexing and complexing electrolyte anions and tetramethylammonium as dispersing additive. Electrophoresis 2018, 39, 1429-1436. DOI: 10.1002/elps.201800095.
  • Prapatpong, P.; Nuchtavorn, N.; Macka, M.; Suntornsuk, L.; In-capillary derivatization with fluorescamine for the rapid determination of adamantane drugs by capillary electrophoresis with UV detection. J. Sep. Sci. 2018, 41, 1-. DOI: 10.1002/jssc.201800591.
  • Nejdl, L.; Moravanska, A.; Smerkova, K.; Mravec, F.; Krizkova, S.; Pomorski, A.; Krezel, A.; Macka, M.; Adam, V.; Vaculovicova, M.; Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn2+ ions. Analytica Chimica Acta 2018, 1017, 41-47. DOI: 10.1016/j.aca.2018.02.008.
  • Li, Y.; Nesterenko, P. N.; Stanley, R.; Paull, B.; Macka, M.; High sensitivity deep-UV LED-based z-cell photometric detector for capillary liquid chromatography. Analytica Chimica Acta 2018, 1023, 197-202. DOI: 10.1016/j.aca.2018.06.005.
  • Li, Y.; Nesterenko, P. N.; Stanley, R.; Paull, B.; Macka, M.; Comparison of cation-exchange capillary columns used for ion chromatographic separation of biogenic amines. J. Chromatogr. A 2018, 1571, 193-200. DOI: 10.1016/j.chroma.2018.08.021.
  • Zdrazil, L.; Zahradnicek, R.; Mohan, R.; Sedlacek, P.; Nejdl, L.; Schmiedova, V.; Pospisil, J.; Horak, M.; Weiter, M.; Zmeskal, O.; Hubalek, J.; Preparation of graphene quantum dots through liquid phase exfoliation method. J. Lumines. 2018, 204, 203-208. DOI: 10.1016/j.jlumin.2018.08.017.
  • Mahbub, P.; Leis, J.; Macka, M.; Chemometric approach to the calibration of light emitting diode based optical gas sensors using high-resolution transmission molecular absorption data. Analytical Chemistry 2018, 90, 5973-5976. DOI: 10.1021/acs.analchem.8b01295.
  • Nejdl, L.; Zelnickova, J.; Vaneckova, T.; Hynek, D.; Adam, V.; Vaculovicova, M.; Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. New J. Chem. 2018, 42, 6005-6012. DOI: 10.1039/c7nj05167k.
  • Nejdl, L.; Hynek, D.; Adam, V.; Vaculovicova, M.; Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale. Nanotechnology 2018, 29, 1-12. DOI: 10.1088/1361-6528/aaabd4.